
RISC-V CPU Optimization For Machine Learning
Applications

Kurt Meister
Department of Electrical &

Computer Engineering
The University of Arizona

Tucson, AZ 85719
kmeister@email.arizona.edu

David Tondre
Department of Electrical &

Computer Engineering
The University of Arizona

Tucson, AZ 85719
dat1@email.arizona.edu

Thao Vo
Department of Electrical &

Computer Engineering
The University of Arizona

Tucson, AZ 85719
thaovo@email.arizona.edu

Benjamin Wichmann
Department of Electrical &

Computer Engineering
The University of Arizona

Tucson, AZ 85719
wichmannb@email.arizona.edu

Abstract—

With the use of Machine learning growing in nearly all fields
of consumer and business computing devices, there is a growing
desire to push these capabilities out of the datacenter and to edge
computing devices. Such devices are often small form factors that
leverage low cost CPUs with RISC Architectures. Given the
opportunity to leverage a configurable RISC-V core, this paper
seeks to demonstrate a series of straightforward experiments
which can leverage the configurability of open source CPU design
to optimize a CPU core to execute an ANN classifier. This paper
demonstrates simple configuration modifications which result in
an approximation of 20% runtime performance improvement in
a Neural Network Benchmark application.

Keywords—Deep Learning, RISC-V ISA, Gem5, Tensor Flow,
ANN, MLP

I. INTRODUCTION
Machine Learning (ML) is a fast growing field used in many
industries to optimize and scale their infrastructure. It plays a
critical role in extracting meaningful information out of large
data sets that are too complex for humans. Algorithms known
as Deep Neural Networks use sophisticated mathematical
modeling to process data in complex ways, and have
revolutionized the concept of ML.

RISC architectures are typically reserved for lower power
computing in smartphones and IoT devices. Historically, there
has not been enough computing power to enable ML on the
device itself, so most of the ML algorithms are pushed to the
cloud. By optimizing a lower power embedded SoC
computing device to execute ML, the work can further the
goal of allowing edge computing devices to execute without
needing to send data back to a data center to be processed.

The goal of this project will be to benchmark and optimize the
Basic In-Order and Out of Order CPU models provided in the
GEM 5 Simulator for use in ML applications. Specifically,
image labeling using a multilayer perceptron (Deep Neural
Network). This work will offer improvements in latency and
improved privacy.

The team hopes to accomplish a meaningful improvement in
the performance of the execution time of a fully trained
perceptron in labeling a test dataset. To achieve this, the team
will be developing a TensorFlow lite based benchmarking
application, analyzing the performance of both the In-Order
and Out-Of-Order RISC-V implementations, and finally
proposing and implementing optimizations to improve
performance for the benchmarking application.

II. RELATED WORK

In “Machine Learning at the Network Edge: A Survey,” M.G.
Sarwar Murshed et al. [1] discusses a variety of techniques for
bringing ML out of the datacenter, and to the network's edge.
Algorithms which are suitable for lower power computing
devices such as K-NN, SVN, and decision trees were
discussed. The challenges associated with bringing neural
networks to lower power computing devices, and some
algorithmic solutions to the problem were addressed. One
technique in particular stuck out: the technique of transfer
learning, where a model can be trained (the more
computationally intensive task) on a more powerful computing
device, but deployed to a lower power device. The team hopes
to leverage this technique in developing the benchmark
application, as it will save considerable time over trying to
train an ML algorithm on a simulated SoC. The survey did
not, however, go into detail on optimizing the underlying
hardware for the application. That is where the team will be
taking a novel approach.

In “Towards Deep Learning using TensorFlow Lite on
RISC-V” [4] Louis, Marcia Sahaya, et al seeks to optimize the
neural network's execution on RISC-V with ISA extensions.
This specifically involved integrating RISC-V Vector ISA
convolution and matrix multiplication instructions to
particular applications. Integrating their optimization into
TensorFlow Lite source code, saw a significant 8X reduction
in the executed instruction count compared to the baseline
implementation. By introducing their subset of RISC-V
Vector instructions, they saw a significant improvement for a

large range of ML applications. The team’s approach differs
from others since it seeks to improve application performance
without altering the ISA.

Likewise, in “Improving the speed of neural networks on
CPUs” Vanhoucke et al. [2] explores the optimization of
machine learning applications from the perspective of
optimizing the Neural Network itself through the use of
existing ISA extensions offered by modern x86 CPUs. Like
the approach outlined in this paper, they begin with a naive
baseline neural network, though focused on speech
interpretation. Unlike this team’s approach though, it is the
benchmark application itself that is optimized.

III. METHODOLOGY
The team’s main goal is to optimize the baseline

Out-of-Order CPU core “DerivO3CPU” provided by the
GEM5 CPU Simulator, leveraging the large variety of
customization options the simulation environment makes
available. The process of doing so involves 3 steps. The first is
to establish a performance baseline. To do that, the team
developed a Neural Network application. The second involves
assessing the baseline performance of the application on the
chosen CPU, looking at the breakdown of instructions
executed, and how the CPU might be altered to improve the
execution of the application. Third, and finally, upon assessing
the individual impact of a number of options on application
performance, the team created a final configuration to assess
the combined improvements. Steps 2 and 3 are discussed in
more detail in the experimental results below. For this context,
the team will be using IPC as the primary performance metric.

A. Benchmark Development
In order to attempt to optimize a CPU design for a given
purpose, it’s necessary to establish a benchmark that can be
representative of the desired application. In the case of this
project, it’s necessary for the benchmark application to be able
to operate on an embedded system without any of the niceties
of an operating system. Fundamentally, most “Deep Learning”
or Artificial Neural Networks (ANN’s) are at heart Multilayer
Perceptrons or MLPs. For this reason, the team chose to
implement a simple MLP as the benchmark.

For the purposes of this experiment, the team created an MLP
with 3 hidden layers using the TensorFlow library in Python
and trained it on a synthetic dataset. A test batch of synthetic
input data, as well as the trained weights are then written to a
series of C-arrays which can be re-used in the benchmark
application. The benchmark application itself re-implements
the functionality of the perceptron in C++. The benchmark
application works by looping over the test dataset and
predicting a class for each input.

The inputs and perceptron are sized to represent a neural
network performing labeling on a 24x24 black and white
image to reflect the overall project goal of optimizing a
RISC-V CPU core for machine learning based inference in

edge computing applications. For this benchmark application,
attempts were made to balance the execution time constraints
of the simulations environment, and the desire to create a
benchmark that would have no dependency on disk I/O, and
no run-time dependencies against the desire to realistically
encompass the behavior of an image classifying Artificial
Neural Network. This balancing act resulted in the MLP
architecture consisting of 3 layers containing roughly 2000
neurons.

The C++ version of the benchmark has been validated against
the same Multi-layer perceptron running in the original
TensorFlow environment and demonstrated to produce the
same outputs given the same inputs.

The team used an Elastic Compute Cloud (EC2) instance on
Amazon Web Services to implement the system above. The
system was configured with the GEM5 simulation software,
the RISC-V Toolchain, and other necessary dependencies to
perform on tests. Appendix A. contains further installation
instructions and setup.

B. Training the Neural Net

A script called “GenerateModel.py”[11] can generate an MLP
with 3 hidden layers along with a few configurable
hyperparameters. This will train the MLP on a synthetic
dataset, then generate a header file containing a set of C arrays
representing the weights of the trained model along with a test
dataset.

Inside the benchmark folder, there is a C++ class layer which
can use the generated header file to run predictions on the test
data set, compiled without the “DEBUG” declaration to create
a version with no outputs to stderr/stdout for embedded
applications.

IV. EXPERIMENTAL RESULTS
The initial benchmarks are run with default configurations.
The adjustable variables includes: l1i_size (L1 cache size for
instruction), l1i_assoc (L1 instruction associativity), l1d_size
(L1 cache size for data), l1d_assoc (L1 data associativity),
cacheline_size, cpu-clock, maxinsts (max instructions), and
with L2 cache.

For the results, the team records results in the following fields:
instruction count, # of cycles simulated, IPC, % load, % store,
% branch, % int, % fp, %ALU, %mem, iCache Miss Rate,
dCache Miss Rate, iCache AMAT, dCache AMAT, sim
seconds, L2 Cache Miss Rate, Total Mem Ref, ALU.

Table 1. Default CPU Parameters

CPU Parameter MinorCPU DerivO3CPU

L1 iCache size (kB) 32 32

L1 dCache size (kB) 32 32

L1 iAssociativity 4 4

L1 dAssociativity 4 4

Cache Line Size 64 64

L2 Cache No No

L2 Cache Size (kB) N/A N/A

L2 Associativity N/A N/A

ROB Size N/A 32

Load/Store Queue Size N/A 32

A. Baseline Results
To establish the baseline performance of the initial
benchmark, the team ran the benchmark through 100000000
instructions. Producing the following results.

Table 2
Baseline CPU Performance Metrics

 Minor CPU DerivO3CPU

IPC 0.599059 1.641667

iCache Miss Rate 0.0058% 0.0092%

dCache Miss Rate 0.2742% 0.6237%

iCache AMAT 1.00464 1.00736

dCache AMAT 1.21936 1.49896

Runtime (sec) 0.10433 0.043014

The instruction content of the first 100000000 instructions was
evaluated. The hypothesis was that this combined with the
baseline performance would provide a good indication of what
configuration options would likely yield the best result. The
Gem5 CPU models break instructions down into operation

classes which are simulated in the CPU core. Below is the
distribution of the instructions within the Operation classes.
Notice that the highest proportion of instructions are related to
memory accesses. Given that fact, the best opportunity for
optimization would be to attempt to optimize the cache
configuration. In the following sections we’ll discuss the
options explored, and their overall impact on the benchmark
runtime.

Table 3
Breakdown of CPU Operations

Operation
Class Count of Instructions

Fraction of Total
Instructions

No_OpClass 10 0.00%

IntAlu 37507149 37.51%

IntMult 3345 0.00%

IntDiv 3 0.00%

FloatAdd 2494424 2.49%

FloatCmp 3316 0.00%

FloatCvt 3628 0.00%

FloatMult 2494451 2.49%

FloatMultAcc 260 0.00%

FloatDiv 26 0.00%

FloatMisc 104 0.00%

MemRead 42492361 42.49%

MemWrite 5013061 5.01%

FloatMemRead 7490116 7.49%

FloatMemWrit
e 2497753 2.50%

IprAccess 0 0.00%

InstPrefetch 0 0.00%

total 100000007

B. Impact of L1 Cache Size on Performance

Below, the impact of varying the L1 Cache size on overall
performance can be seen. Of note is the inflection point
beyond which increasing L1 cache size actually reduces IPC.
Likely owing to the increasing time required to index the
cache vs the benefit of additional close cached items.

Fig 1. Impact of L1 Cache size on IPC

C . Associativity in L1 Cache

This result was somewhat surprising in that less than 4-way
associativity had a very significantly larger performance
impact than increasing the associativity had. Likely, the
reduced associativity increased the number of ejections from
the cache, while the increase did very little to reduce the
number of ejections owing to some locality characteristic of
the data being used as an input to the neural network.

Fig 2. Impact of L1 Cache Associativity on IPC

D. Impact of adding an L2 Cache on CPU Performance

Initial baseline expectation was for an improvement in
performance from the addition of an L2 cache, however as
seen below in Figure 3, that was not the case. Adding an L2
cache was uniformly bad for the performance of both CPU
cores. This suggests that the L1 cache is sufficient for the
chosen benchmark application, and therefore, the L2 cache is
unlikely to contain anything of use that the L1 cache does not
already have, leading to longer overall memory access times.

Fig 3. Impact of L2 Cache size on IPC

E. Advanced customization of the DerivO3 Core

The out of order core offered several additional avenues of
customization not available on the MinorCPU owing to the
fact that it contains a number of hardware elements with
configurable parameters that enable it to execute instructions
out of order. These include configurable Load/Store Queue
sizes (Collectively LSQ), configurable Reorder Buffer (ROB)
depth, and a configurable number of types of Functional Units
(FU).

Initially, modifying the CPU functional unit allocation was of
particular interest due to the high proportion of intALU
operations (see Table 3) however, further investigation
revealed that the configuration of the DerivO3 CPU already
contains 4 IntALU Functional units, and adding additional
units had no noticeable impact on the Application runtime.
One change however did have a very small impact on the
overall performance. Moving from 4 combined Load/Store
units to independent Load/Store units did have the impact of
slightly increasing (~0.0006%) IPC. This is most likely due to
the vagaries of the simulation environment, and not an actual
improvement worth pursuing.

However, modifying the LSQ did show some capacity to
impact CPU performance in a meaningful way.

Fig 4. Impact of LSQ Size on IPC

Other modifications experimented with included modifying
the ROB, and the Commit Width, however those values are
maximized in the default configuration for the DerivO3CPU,
and while the team could degrade performance by using them.
It would not be possible to improve the performance of the
benchmark without significant modification to the underlying
CPU design.

F. Final Selected Configurations:

The configuration below represents the best modifications the
team could identify for improving the performance of the
Machine learning benchmark for the application.

Table 4
Default CPU Parameters

CPU Parameter MinorCPU DerivO3CPU

L1 iCache size (kB) 64 64

L1 dCache size (kB) 64 64

L1 iAssociativity 4 16

L1 dAssociativity 4 16

Cache Line Size 64 64

L2 Cache No No

L2 Cache Size (kB) N/A N/A

L2 Associativity N/A N/A

ROB Size N/A 32

Load/Store Queue
Size N/A 64

Table 4
Final CPU Performance Metrics

 Minor CPU DerivO3CPU

IPC 0.599074 1.768934

iCache Miss Rate 0.0057% 0.0091%

dCache Miss Rate 0.2742% 0.0127%

iCache AMAT 1.00456 1.00728

dCache AMAT 1.21936 2.0132

Runtime (sec) 0.104328 0.035332

V. CONCLUSION
Overall, tuning of high level CPU configuration

parameters, while not altogether ineffective for impacting
application performance is not in and of itself sufficient to
achieve a meaningful increase in the runtime of the chosen
benchmark application. This team was however able to
achieve an ~20% reduction in runtime on the DerivO3CPU
relative to initial baseline configuration.

A. FUTURE WORK

Future work in the area of CPU optimization for machine
learning applications should focus on lower level
optimizations along the lines of instruction specific functional
units, ISA extensions. Specifically in the case of the cores
evaluated in this paper, addition of SIMD instruction sets
would be of great benefit to machine learning applications
where highly vectorizable operations make up the lion’s share
of the work.

ACKNOWLEDGMENT

The team would like to thank Dr. Tosiron Adegbija for his
guidance throughout the semester.

REFERENCES
[1] Murshed, Murphy, et al. “Machine Learning at the Network Edge:

A Survey” arXiv:1908.00080v2 [CS.LG] , Jul 2019
[2] Vanhoucke, Vincent, et all. “Improving the speed of neural

networks on CPUs”. Google, 2011.
[3] Asanovic, Krste, et al. "The rocket chip generator." EECS

Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-17 (2016).

[4] Louis, Marcia Sahaya, et al. "Towards Deep Learning using
TensorFlow Lite on RISC-V." Proc. ACM CARRV (2019).

[5] Sze, Vivienne, et al. "Hardware for machine learning: Challenges
and opportunities." 2017 IEEE Custom Integrated Circuits
Conference (CICC). IEEE, 2017.

[6] Nöltner-Augustin, M. "RISC-V—Architecture and Interfaces The
RocketChip." COMPUTER ENGINEERING (2016): 6.

[7] Branco, Sergio, et al. "Machine Learning in Resource-Scarce
Embedded Systems, FPGAs, and End-Devices: A Survey".
Electronics (2019):8.

[8] Kotas, Gerald. "Exploration of GPU Cache Architectures
Targeting Machine Learning Applications". RIT Scholars.

[9] Gem5, “Gem5 Installation”.“https://github.com/gem5/gem5
[10] RISC-V, “RISCV-GNU-Toolchain”.

https://github.com/riscv/riscv-gnu-toolchain
[11] Meister, Kurt. “ML Benchmark”.

https://github.com/kmeister/ML_Benchmark
[12] Kukunas, Jim (2015). “Power and Performance: Software

Analysis and Optimization”. Morgan Kaufman. p. 37. ISBN
9780128008140.

https://github.com/gem5/gem5
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/kmeister/ML_Benchmark

APPENDIX

A. Environment Set Up and Software Installations
To perform this research, the team used the following system configurations:

- AWS EC2 Instance:
Model: C5.xlarge (vCPU=4, Memory=4Gb, Storage>=30GB)
OS: Ubuntu 18.04

The following steps were used to perform the software configuration:

1. Build GEM5 for RISC-V

Install GEM5 dependencies:
$ sudo apt install build-essential
$ apt install m4 zlib1g-dev scons python-six python-dev

Clone and Build GEM5
$ git clone https://gem5.googlesource.com/public/gem5
$ cd gem5
$ scons build/RISCV/gem5.opt

To test gem5:
$ build/RISCV/gem5.opt configs/example/se.py -c tests/test- progs/hello/bin/riscv/linux/hello

2. Install RISC-V toolchain:
Install RISC-V Toolchain Dependencies:
$ sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison
flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev

Clone and Build RISC-V Toolchain
$ git clone https://github.com/riscv/riscv-gnu-toolchain
$./configure --prefix=/opt/riscv
$ PATH=/opt/riscv/bin/:$PATH
$ make linux

3. Clone Custom Code Repository and Build Benchmark:

Clone Benchmark repository:
$ git clone https://github.com/kmeister/ML_Benchmark.git

Build the Benchmark:
$ cd ML_Benchmark/benchmarks
$ riscv64-unknown-linux-gnu-gcc -static -Wall -O0 -I. -c main.cpp -o main.o
$ riscv64-unknown-linux-gnu-g++ -static -Wall -L. -o mlbench main.o

Run Benchmark:
$ build/RISCV/gem5.opt configs/example/se.py --cpu-type DerivO3CPU -c ../ML_Benchmark/Benchmarks/mlbench

--caches --l1i_size=32kB --l1i_assoc=4 --l1d_size=32kB --l1d_assoc=4 --cacheline_size=64 --cpu-clock=1.6GHz
--maxinsts=1000000

4. Retrain Neural Network:
Retrain the Neural Network
$ cd ML_Benchmark/scripts
$./ModelGenerator.py ../Benchmarks/Weights.h

(if desired) Use the following to alter the Neural Network Weights:
To see the options for configuring a model:
$./ModelGenerator.py -h

Generate a weights.h model:
$./ModelGenerator.py ../Benchmarks/Weights.h --test_size=1000 --n_classes=26 --n_features=576 --layer1=1000

--layer2=1000 --n_epochs=35

https://gem5.googlesource.com/public/gem5
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/kmeister/ML_Benchmark.git

