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Abstract—  

With the use of Machine learning growing in nearly all fields           
of consumer and business computing devices, there is a growing          
desire to push these capabilities out of the datacenter and to edge            
computing devices. Such devices are often small form factors that          
leverage low cost CPUs with RISC Architectures. Given the         
opportunity to leverage a configurable RISC-V core, this paper         
seeks to demonstrate a series of straightforward experiments        
which can leverage the configurability of open source CPU design          
to optimize a CPU core to execute an ANN classifier. This paper            
demonstrates simple configuration modifications which result in       
an approximation of 20% runtime performance improvement in        
a Neural Network Benchmark application.  

Keywords—Deep Learning, RISC-V ISA, Gem5, Tensor Flow,       
ANN, MLP 

I. INTRODUCTION 
Machine Learning (ML) is a fast growing field used in many           
industries to optimize and scale their infrastructure. It plays a          
critical role in extracting meaningful information out of large         
data sets that are too complex for humans. Algorithms known          
as Deep Neural Networks use sophisticated mathematical       
modeling to process data in complex ways, and have         
revolutionized the concept of ML. 
 
RISC architectures are typically reserved for lower power        
computing in smartphones and IoT devices. Historically, there        
has not been enough computing power to enable ML on the           
device itself, so most of the ML algorithms are pushed to the            
cloud. By optimizing a lower power embedded SoC        
computing device to execute ML, the work can further the          
goal of allowing edge computing devices to execute without         
needing to send data back to a data center to be  processed.  
 
The goal of this project will be to benchmark and optimize the            
Basic In-Order and Out of Order CPU models provided in the           
GEM 5 Simulator for use in ML applications. Specifically,         
image labeling using a multilayer perceptron (Deep Neural        
Network). This work will offer improvements in latency and         
improved privacy. 
 

The team hopes to accomplish a meaningful improvement in         
the performance of the execution time of a fully trained          
perceptron in labeling a test dataset. To achieve this, the team           
will be developing a TensorFlow lite based benchmarking        
application, analyzing the performance of both the In-Order        
and Out-Of-Order RISC-V implementations, and finally      
proposing and implementing optimizations to improve      
performance for the benchmarking application. 

II. RELATED WORK 

In “Machine Learning at the Network Edge: A Survey,” M.G.          
Sarwar Murshed et al. [1] discusses a variety of techniques for           
bringing ML out of the datacenter, and to the network's edge.           
Algorithms which are suitable for lower power computing        
devices such as K-NN, SVN, and decision trees were         
discussed. The challenges associated with bringing neural       
networks to lower power computing devices, and some        
algorithmic solutions to the problem were addressed. One        
technique in particular stuck out: the technique of transfer         
learning, where a model can be trained (the more         
computationally intensive task) on a more powerful computing        
device, but deployed to a lower power device. The team hopes           
to leverage this technique in developing the benchmark        
application, as it will save considerable time over trying to          
train an ML algorithm on a simulated SoC. The survey did           
not, however, go into detail on optimizing the underlying         
hardware for the application. That is where the team will be           
taking a novel approach. 
 
In “Towards Deep Learning using TensorFlow Lite on        
RISC-V” [4] Louis, Marcia Sahaya, et al seeks to optimize the           
neural network's execution on RISC-V with ISA extensions.        
This specifically involved integrating RISC-V Vector ISA       
convolution and matrix multiplication instructions to      
particular applications. Integrating their optimization into      
TensorFlow Lite source code, saw a significant 8X reduction         
in the executed instruction count compared to the baseline         
implementation. By introducing their subset of RISC-V       
Vector instructions, they saw a significant improvement for a         



large range of ML applications. The team’s approach differs         
from others since it seeks to improve application performance         
without altering the ISA.  
 
Likewise, in “Improving the speed of neural networks on         
CPUs” Vanhoucke et al. [2] explores the optimization of         
machine learning applications from the perspective of       
optimizing the Neural Network itself through the use of         
existing ISA extensions offered by modern x86 CPUs. Like         
the approach outlined in this paper, they begin with a naive           
baseline neural network, though focused on speech       
interpretation. Unlike this team’s approach though, it is the         
benchmark application itself that is optimized. 

III. METHODOLOGY  
The team’s main goal is to optimize the baseline         

Out-of-Order CPU core “DerivO3CPU” provided by the       
GEM5 CPU Simulator, leveraging the large variety of        
customization options the simulation environment makes      
available. The process of doing so involves 3 steps. The first is            
to establish a performance baseline. To do that, the team          
developed a Neural Network application. The second involves        
assessing the baseline performance of the application on the         
chosen CPU, looking at the breakdown of instructions        
executed, and how the CPU might be altered to improve the           
execution of the application. Third, and finally, upon assessing         
the individual impact of a number of options on application          
performance, the team created a final configuration to assess         
the combined improvements. Steps 2 and 3 are discussed in          
more detail in the experimental results below. For this context,          
the team will be using IPC as the primary performance metric.  

A. Benchmark Development 
In order to attempt to optimize a CPU design for a given            
purpose, it’s necessary to establish a benchmark that can be          
representative of the desired application. In the case of this          
project, it’s necessary for the benchmark application to be able          
to operate on an embedded system without any of the niceties           
of an operating system. Fundamentally, most “Deep Learning”        
or Artificial Neural Networks (ANN’s) are at heart Multilayer         
Perceptrons or MLPs. For this reason, the team chose to          
implement a simple MLP as the benchmark. 

For the purposes of this experiment, the team created an MLP           
with 3 hidden layers using the TensorFlow library in Python          
and trained it on a synthetic dataset. A test batch of synthetic            
input data, as well as the trained weights are then written to a             
series of C-arrays which can be re-used in the benchmark          
application. The benchmark application itself re-implements      
the functionality of the perceptron in C++. The benchmark         
application works by looping over the test dataset and         
predicting a class for each input. 

The inputs and perceptron are sized to represent a neural          
network performing labeling on a 24x24 black and white         
image to reflect the overall project goal of optimizing a          
RISC-V CPU core for machine learning based inference in         

edge computing applications. For this benchmark application,       
attempts were made to balance the execution time constraints         
of the simulations environment, and the desire to create a          
benchmark that would have no dependency on disk I/O, and          
no run-time dependencies against the desire to realistically        
encompass the behavior of an image classifying Artificial        
Neural Network. This balancing act resulted in the MLP         
architecture consisting of 3 layers containing roughly 2000        
neurons.  

The C++ version of the benchmark has been validated against          
the same Multi-layer perceptron running in the original        
TensorFlow environment and demonstrated to produce the       
same outputs given the same inputs. 

The team used an Elastic Compute Cloud (EC2) instance on          
Amazon Web Services to implement the system above. The         
system was configured with the GEM5 simulation software,        
the RISC-V Toolchain, and other necessary dependencies to        
perform on tests. Appendix A. contains further installation        
instructions and setup. 

 

B. Training the Neural Net 

A script called “GenerateModel.py”[11] can generate an MLP        
with 3 hidden layers along with a few configurable         
hyperparameters. This will train the MLP on a synthetic         
dataset, then generate a header file containing a set of C arrays            
representing the weights of the trained model along with a test           
dataset. 

Inside the benchmark folder, there is a C++ class layer which           
can use the generated header file to run predictions on the test            
data set, compiled without the “DEBUG” declaration to create         
a version with no outputs to stderr/stdout for embedded         
applications.  

IV. EXPERIMENTAL RESULTS  
The initial benchmarks are run with default configurations.        
The adjustable variables includes: l1i_size (L1 cache size for         
instruction), l1i_assoc (L1 instruction associativity), l1d_size      
(L1 cache size for data), l1d_assoc (L1 data associativity),         
cacheline_size, cpu-clock, maxinsts (max instructions), and      
with L2 cache. 

For the results, the team records results in the following fields:           
instruction count, # of cycles simulated, IPC, % load, % store,           
% branch, % int, % fp, %ALU, %mem, iCache Miss Rate,           
dCache Miss Rate, iCache AMAT, dCache AMAT, sim        
seconds, L2 Cache Miss Rate, Total Mem Ref, ALU. 

 
 
 
 
 



 

 

Table 1. Default CPU Parameters 

CPU Parameter MinorCPU DerivO3CPU 

L1 iCache size (kB) 32 32 

L1 dCache size (kB) 32 32 

L1 iAssociativity 4 4 

L1 dAssociativity 4 4 

Cache Line Size 64 64 

L2 Cache No No 

L2 Cache Size (kB) N/A N/A 

L2 Associativity N/A  N/A  

ROB Size N/A  32 

Load/Store Queue Size N/A  32 

 

A. Baseline Results 
To establish the baseline performance of the initial        
benchmark, the team ran the benchmark through 100000000        
instructions. Producing the following results. 

Table 2 
Baseline CPU Performance Metrics 

  Minor CPU DerivO3CPU 

IPC 0.599059 1.641667 

iCache Miss Rate 0.0058% 0.0092% 

dCache Miss Rate 0.2742% 0.6237% 

iCache AMAT 1.00464 1.00736 

dCache AMAT 1.21936 1.49896 

Runtime (sec) 0.10433 0.043014 

 

 

The instruction content of the first 100000000 instructions was         
evaluated. The hypothesis was that this combined with the         
baseline performance would provide a good indication of what         
configuration options would likely yield the best result. The         
Gem5 CPU models break instructions down into operation        

classes which are simulated in the CPU core. Below is the           
distribution of the instructions within the Operation classes.        
Notice that the highest proportion of instructions are related to          
memory accesses. Given that fact, the best opportunity for         
optimization would be to attempt to optimize the cache         
configuration. In the following sections we’ll discuss the        
options explored, and their overall impact on the benchmark         
runtime.  

Table 3 
Breakdown of CPU Operations 

Operation 
Class Count of Instructions 

Fraction of Total 
Instructions 

No_OpClass 10 0.00% 

IntAlu 37507149 37.51% 

IntMult 3345 0.00% 

IntDiv 3 0.00% 

FloatAdd 2494424 2.49% 

FloatCmp 3316 0.00% 

FloatCvt 3628 0.00% 

FloatMult 2494451 2.49% 

FloatMultAcc 260 0.00% 

FloatDiv 26 0.00% 

FloatMisc 104 0.00% 

MemRead 42492361 42.49% 

MemWrite 5013061 5.01% 

FloatMemRead 7490116 7.49% 

FloatMemWrit
e 2497753 2.50% 

IprAccess 0 0.00% 

InstPrefetch 0 0.00% 

total 100000007   

 

B. Impact of L1 Cache Size on Performance 

Below, the impact of varying the L1 Cache size on overall           
performance can be seen. Of note is the inflection point          
beyond which increasing L1 cache size actually reduces IPC.         
Likely owing to the increasing time required to index the          
cache vs the benefit of additional close cached items. 

 



Fig 1. Impact of  L1 Cache size on IPC  

C . Associativity in L1 Cache 

This result was somewhat surprising in that less than 4-way          
associativity had a very significantly larger performance       
impact than increasing the associativity had. Likely, the        
reduced associativity increased the number of ejections from        
the cache, while the increase did very little to reduce the           
number of ejections owing to some locality characteristic of         
the data being used as an input to the neural network.  

Fig 2. Impact of L1 Cache Associativity on IPC 

D. Impact of adding an L2 Cache on CPU Performance 

Initial baseline expectation was for an improvement in        
performance from the addition of an L2 cache, however as          
seen below in Figure 3, that was not the case. Adding an L2             
cache was uniformly bad for the performance of both CPU          
cores. This suggests that the L1 cache is sufficient for the           
chosen benchmark application, and therefore, the L2 cache is         
unlikely to contain anything of use that the L1 cache does not            
already have, leading to longer overall memory access times.  

 

Fig 3. Impact of L2 Cache size on IPC 

 

E. Advanced customization of the DerivO3 Core 

The out of order core offered several additional avenues of          
customization not available on the MinorCPU owing to the         
fact that it contains a number of hardware elements with          
configurable parameters that enable it to execute instructions        
out of order. These include configurable Load/Store Queue        
sizes (Collectively LSQ), configurable Reorder Buffer (ROB)       
depth, and a configurable number of types of Functional Units          
(FU).  

Initially, modifying the CPU functional unit allocation was of         
particular interest due to the high proportion of intALU         
operations (see Table 3) however, further investigation       
revealed that the configuration of the DerivO3 CPU already         
contains 4 IntALU Functional units, and adding additional        
units had no noticeable impact on the Application runtime.         
One change however did have a very small impact on the           
overall performance. Moving from 4 combined Load/Store       
units to independent Load/Store units did have the impact of          
slightly increasing (~0.0006%) IPC. This is most likely due to          
the vagaries of the simulation environment, and not an actual          
improvement worth pursuing.  

However, modifying the LSQ did show some capacity to         
impact CPU performance in a meaningful way. 

 

Fig 4. Impact of LSQ Size on IPC 



Other modifications experimented with included modifying      
the ROB, and the Commit Width, however those values are          
maximized in the default configuration for the DerivO3CPU,        
and while the team could degrade performance by using them.          
It would not be possible to improve the performance of the           
benchmark without significant modification to the underlying       
CPU design. 

 

F. Final Selected Configurations: 

The configuration below represents the best modifications the        
team could identify for improving the performance of the         
Machine learning benchmark for the application. 

 

Table 4 
Default CPU Parameters 

CPU Parameter MinorCPU DerivO3CPU 

L1 iCache size (kB) 64 64 

L1 dCache size (kB) 64 64 

L1 iAssociativity 4 16 

L1 dAssociativity 4 16 

Cache Line Size 64 64 

L2 Cache No No 

L2 Cache Size (kB) N/A N/A 

L2 Associativity N/A  N/A  

ROB Size N/A  32 

Load/Store Queue 
Size N/A  64 

 

Table 4 
Final CPU Performance Metrics 

  Minor CPU DerivO3CPU 

IPC 0.599074 1.768934 

iCache Miss Rate 0.0057% 0.0091% 

dCache Miss Rate 0.2742% 0.0127% 

iCache AMAT 1.00456 1.00728 

dCache AMAT 1.21936 2.0132 

Runtime (sec) 0.104328 0.035332 

 

V. CONCLUSION  
Overall, tuning of high level CPU configuration       

parameters, while not altogether ineffective for impacting       
application performance is not in and of itself sufficient to          
achieve a meaningful increase in the runtime of the chosen          
benchmark application. This team was however able to        
achieve an ~20% reduction in runtime on the DerivO3CPU         
relative to initial baseline configuration.  

A. FUTURE WORK 

Future work in the area of CPU optimization for machine          
learning applications should focus on lower level       
optimizations along the lines of instruction specific functional        
units, ISA extensions. Specifically in the case of the cores          
evaluated in this paper, addition of SIMD instruction sets         
would be of great benefit to machine learning applications         
where highly vectorizable operations make up the lion’s share         
of the work.  
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APPENDIX 

A. Environment Set Up and Software Installations  
To perform this research, the team used the following system configurations:  

- AWS EC2 Instance:  
Model: C5.xlarge (vCPU=4, Memory=4Gb, Storage>=30GB) 
OS: Ubuntu 18.04 

The following steps were used to perform the software configuration:  

1. Build GEM5 for RISC-V 

Install GEM5 dependencies: 
$ sudo apt install build-essential 
$ apt install m4 zlib1g-dev scons python-six python-dev 
 
Clone and Build GEM5 
$ git clone https://gem5.googlesource.com/public/gem5 
$ cd gem5 
$ scons build/RISCV/gem5.opt 

To test gem5: 
$ build/RISCV/gem5.opt configs/example/se.py -c tests/test- progs/hello/bin/riscv/linux/hello 

2. Install RISC-V toolchain: 
Install RISC-V Toolchain Dependencies: 
$ sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison               
flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev 
 
Clone and Build RISC-V Toolchain 
$ git clone https://github.com/riscv/riscv-gnu-toolchain 
$ ./configure --prefix=/opt/riscv 
$ PATH=/opt/riscv/bin/:$PATH 
$ make linux 
 

3. Clone Custom Code Repository and Build Benchmark:  

Clone Benchmark repository: 
$ git clone https://github.com/kmeister/ML_Benchmark.git 

Build the Benchmark: 
$ cd ML_Benchmark/benchmarks 
$ riscv64-unknown-linux-gnu-gcc -static -Wall -O0 -I. -c main.cpp -o main.o  
$ riscv64-unknown-linux-gnu-g++ -static -Wall -L. -o mlbench main.o  
 
Run Benchmark: 
$ build/RISCV/gem5.opt configs/example/se.py --cpu-type DerivO3CPU  -c  ../ML_Benchmark/Benchmarks/mlbench 

--caches --l1i_size=32kB --l1i_assoc=4 --l1d_size=32kB --l1d_assoc=4 --cacheline_size=64 --cpu-clock=1.6GHz 
--maxinsts=1000000 

4. Retrain Neural Network: 
Retrain the Neural Network 
$ cd ML_Benchmark/scripts 
$ ./ModelGenerator.py ../Benchmarks/Weights.h 
 
(if desired) Use the following to alter the Neural Network Weights:  
To see the options for configuring a model:  
$ ./ModelGenerator.py -h 

 
Generate a weights.h model: 
$ ./ModelGenerator.py ../Benchmarks/Weights.h --test_size=1000 --n_classes=26 --n_features=576 --layer1=1000 

--layer2=1000 --n_epochs=35 

https://gem5.googlesource.com/public/gem5
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/kmeister/ML_Benchmark.git

